How science can contribute to poverty alleviation in Africa

Abstract For close to 40 years scientists at the International Centre of Insect Physiology and Ecology (icipe) have been developing tools and technologies to control arthropods as plant pests or vectors of important human and veterinary diseases in sub-Saharan Africa (SSA). Examples include work on tsetse flies (Glossina spp.) transmitting trypanosomes causing the nagana disease, with annual losses as high as $ 4.75 billion / yr the biggest threat to the livestock industry in Africa, and the dreaded Human African Trypanosomiasis (HAT) or Human Sleeping Sickness, one of the so-called neglected tropical diseases; Anopheles mosquitoes, the malaria vectors in tropical Africa, a disease that kills more than one million people annually; tick-borne diseases in livestock such as theileriosis, babesiosis, anaplasmosis, cowdriosis and dermatophilosis (in Africa 90% of cattle are infested with ticks and about $700 million are spent on acaricides annually); sandflies (Phlebotomus spp.) transmitting leishmaniasis; and recently several mosquito species transmitting arboviral diseases such as Rift Valley Fever, Dengue Fever, Chikungunya, Yellow Fever etc. The main thrust of icipe’s research on disease vectors has always been to improve our understanding of their ecology and behaviour, and using this knowledge to develop simple but effective control tools. For instance one of the trademark innovations at icipe has been the development of the NGU trap, a simple but effective tsetse trap that due to its combination of highly attractive visual and olfactory cues can be efficiently used for monitoring and control of savannah species, the principal vectors of nagana. Presently similar bait (both visual and olfactory) technologies are being developed for riverine tsetse species, the main vectors of HAT. Work on mosquito control include both upstream research on host-seeking behaviour of the mosquitoes, and the role of plant-feeding in female Anopheles gambiae, as well as downstream research in development of integrated, community-based malaria control programmes specifically tailored for different ecosystems. Potent repellents for control of disease vectors are being developed from synthetic sources or from blends of un-preferred animals (e.g. waterbuck and zebra in case of tsetse) and un-preferred feeding sites (e.g. in case of ticks and mosquitoes). Tick management strategies based on behavioural manipulation using semiochemicals, repellents from ethno-botanicals with biopesticides are also being developed. Another way of ‘intelligent’ vector control is the so-called auto-dissemination approach, by which a vector is lured by a pheromone or kairomone to a device where it picks up a pathogen (most often spores of entomopathogenic fungi) that are then horizontally transmitted in the population. For more info - http://www.embl.de/aboutus/science_society/onlineseminars/20110110_borgemeister/index.html